The Cellular Transformation of Injected Colloidal Iron Complexes into Ferritin and Hemosiderin in Experimental Animals
نویسنده
چکیده
As revealed by electron microscopy and electron diffraction, the physical state of ferric hydroxide micelles contained in iron-dextran, saccharated iron oxide, and hydrous ferric oxide ("ferric hydroxide") differs notably from the state of the ferric hydroxide in ferritin or hemosiderin. By virtue of this difference one can trace the intracellular transformation of colloidal iron, administered parenterally, into ferritin and hemosiderin. One hour after intraperitoneal injection of iron-dextran or saccharated iron oxide into mice, characteristic deposits were present in splenic macrophages, in sinusoidal endothelial cells of spleen and liver, and in vascular endothelial cells of various renal capillaries. Four hours after injection, small numbers of ferritin molecules were identifiable about intracellular aggregates of injected iron compounds; and by the 6th day, ferritin was abundant in close proximity to deposits of injected iron compounds. The latter were frequently situated in cytoplasmic vesicles delimited by single membranes. These vesicles were most frequently found in tissue obtained during the first 6 days after injection; and in certain of the vesicles ferritin molecules surrounded closely packed aggregates of injected material. Much unchanged ferric hydroxide was still present in macrophages and vascular endothelial cells 3 to 4 weeks after injection. While electron microscopy left no doubt about the identity of injected ferric hydroxide on the one hand, and of ferritin or hemosiderin on the other, histochemical tests for iron failed in this respect. Precipitation of ferric hydroxide (hydrous ferric oxide) from stabilized colloidal dispersions of iron-dextran was brought about in vitro by incubation with minced mouse tissue (e.g. liver), but not by incubation with mouse serum or blood. Subcutaneous injections of hydrous gel of ferric oxide into mice initially produced localized extracellular precipitates. Most of the material was still extracellular 16 days after injection, though part of it was phagocytized by macrophages near the site of injection; but apparently none reached the spleen in unaltered form. Five days after injection and thereafter, much ferritin was present in macrophages about the site of injection and in the spleen. The findings show that iron preparations widely used in therapy can be identified within cells, and that their intracellular disposition and fate can be followed at the molecular level. Considered in the light of previous work, they indicate that the characteristic structure of the ferric hydroxide micelles in molecules of ferritin is specific, and develops during the union of apoferritin with ferric hydroxide. Apparently this union does not depend upon specific cell components.
منابع مشابه
Transformation rate between ferritin and hemosiderin assayed by serum ferritin kinetics in patients with normal iron stores and iron overload
Ferritin iron, hemosiderin iron, total iron stores and transformation rate were determined by serum ferritin kinetics. The transformation rate between ferritin and hemosiderin is motivated by the potential difference between them. The transformer determines transformation rate according to the potential difference in iron mobilization and deposition. The correlations between transformation rate...
متن کاملThe Nature of Storage Iron in Idiopathic Hemochromatosis and in Hemosiderosis
Using three different methods of cells fractionation, hemosiderin granules were isolated from tissues (liver and/or spleen) of three patients. The samples were obtained from a case of idiopathic hemochromatosis, a case of thalassemia major with secondary (transfusional?) hemosiderosis, and a case of transfusional hemosiderosis associated with an unclassified anemia. Iron, nitrogen, and protein ...
متن کاملIncreasing and Decreasing Phases of Ferritin and Hemosiderin Iron Determined by Serum Ferritin Kinetics
We attempted to clarify the mechanism of the storage iron metabolism. A new program of serum ferritin kinetics was applied for studying the increasing and decreasing phases of ferritin and hemosiderin iron in iron addition and removal in patients with a normal level of iron stores or iron overload. The change of ferritin iron in response to iron addition and removal was rapid in the initial sta...
متن کاملDetermination of ferritin and hemosiderin iron in patients with normal iron stores and iron overload by serum ferritin kinetics.
We attempted to clarify the storage iron metabolism from the change in the serum ferritin level. We assumed that the nonlinear decrease in serum ferritin was caused by serum ferritin increase in iron mobilization. Under this assumption, we determined both ferritin and hemosiderin iron levels by computer-assisted simulation of the row of decreasing assay-dots of serum ferritin in 11 patients wit...
متن کاملObservations on Fe59 labeled bone marrow ferritin.
LTHOUGH FERRITIN has been shown to be present in many tissues of the body, the bulk of it is found in the cells of the liver, the spleen, and the bone marrow.”2 Ferritin aggregates with other cellular constituents, it is believed, to form insoluble complexes called hemosiderin.3 Ferritin and hemosiderin constitute the body’s storage depot of iron. Most of this iron supply, derived chiefly from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 109 شماره
صفحات -
تاریخ انتشار 1959